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Abstract A very general class of shell theories is established, based on a unified variational principle
and on expansions with respect to biorthogonal function systems. The shell models derived are able
to accommodate the flow theory of large strain thermoelastoplasticity including the effects due to
unloading. The specific case of a compressible neo-Hookcan material with a von Mises yield
condition is discussed in detail. ( 1997 Elsevier Science Ltd.

I. !l'TRODLJCTION

The development of shell theories has been marked by two competing approaches, There
are, on the one hand, the "degenerated solid formulations", see, e,g" the treatments in the
books by Crisfield (1991), or by Zienkiewicz and Taylor (1991), which offer the advantages
of great flexibility and easy numerical implementation, On the other hand we have the
"stress resultant based formulations" which comprise all classical shell and plate theories
and have been revived by Simo and his coworkers in a series of papers; see, e.g., Simo and
Fox (1989), Simo and Kennedy (1992), compare also the account in the book by Antman
(1995), They lead to analytical models which inherit the structure of the underlying three­
dimensional theories and have the benefit of being accessible to methods of mathematical
analysis yielding existence and uniqueness or bifurcation results. Also, the quantities
involved can be better interpreted from a mechanical point of view.

Considering elastoplastic shells now, we have to face another difficulty. Because of
history-dependent inelastic deformations, the stresses become history-dependent themselves
and show complicated behavior across the shell thickness, e.g., during buckling we typically
have plastic loading and elastic unloading in a single (I) cross section. This seems to leave
us with the "degenerated solid approach" as the only way to go, The features mentioned
above, however, make it still very desirable to have "stress resultant based models", Simo
and Kennedy (1992), and Gilbert and Hackl (1995), have made efforts in this direction.
Because of restrictions of the constitutive models used in those papers, however, the theories
developed are not able to capture effects involving simultaneous loading and unloading.

Similar problems arise to a smaller extent when dealing with nonlinearly elastic
materials.

The purpose of this paper is to present a class of shell theories which offers the following
benefits:

(i) It contains practically all existing "degenerated solid" as well as "stress resultant
based" theories as special cases, thus combining the advantages of those.
(ii) It allows us to treat simultaneous loading and unloading in a single cross section.

(iii) It can be adapted in a flexible and economical way to essentially any constitutive
model of nonlinear elasticity or elastoplasticity.
(iv) It reflects the structure of the underlying three-dimensional theory.

The theory proposed relies on two fundamental ideas: first of all, the power series
expansions across the shell thickness of the quantities involved developed in the works by
Naghdi (1972), and Dikmen (1982), are generalized to expansions with respect to arbitrary
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biorthogonal function systems. Only in this way can we obtain enough flexibility to treat
elastoplastic problems with their unilateral constraints.

Secondly we substitute those expansions into a novel variational principle developed
by Hackl (1995), which constitutes an extension of the well known Hu-Washizu-principle
to elastoplastic materials. This allows, on the one hand, a rational derivation of the two­
dimensional theory from the three-dimensional one. On the other hand different expansions
can be introduced for the kinematical and constitutive quantities, thus allowing very
economical modelling. A Hu-Washizu-principle in connection with inelastic shells has
already been used by Mukherjee and Kollman (1985).

An important point is that the paper does not aim to give an asymptotic analysis in
the spirit of Ciarlet (1980), i.e., to investigate the limit behavior as the shell thickness tends
to zero. The reason for this is that, for nonlinear materials, only the tangent modulus at
zero strain is retained by the asymptotics, as shown by Davet (1986). which leads, especially
in the elastoplastic case, to mechanically unrealistic models. For such materials there is
typically a coupling of effects which are scaled with different powers of the shell thickness.
This means we have to work with (generally) thin but not infinitely thin bodies. Attempts
for asymptotic theories for elastoplastic shells have been made by Destuynder and Nguyen
(1985), and Gilbert and Hackl (1995).

The course of the paper will be as follows: it starts with a brief exposition of shell
kinematics in Section 2. In Section 3 we introduce the constitutive theory of thermo­
elastoplasticity and the related unified variational principle. In Section 4 we discuss
three fundamental assumptions distinguishing shells from general three-dimensional bodies.
In Section 5 we introduce biorthogonal function systems. In Section 6 we perform the
reduction to a two-dimensional theory. Section 7 deals with the unilateral constraints
imposed by elastoplasticity. In Section 8 we derive the expression for the elastoplastic
tangent operator. Finally, in order to demonstrate the capabilities of the theoretical frame­
work developed, we specify it to a model of large strain elastoplasticity in Section 9.
Conclusions are drawn in Section 10.

2. FUNDAMENTAL Klf\;EMATICS

Notation: the dot product of a covariant vector (linear form) ex = (a,) and a contra­
variant vector v = (Vi) is defined by ex' v := ex(v) = ':1.,1", where we have adopted the usual
summation convention. In a similar manner we define the dot products of a tensor and a
vector, T' v :=(Tjvi ), and of two tensors, (A' B) j:= A~B7. The inner product of two tensors
is given by S: T:= Sj T; = tr(ST . T), where the trace tr(T) of a mixed variant tensor
T = (Tj) : ·r ---> 'r is the sum of its eigenvalues; in components tr(T) = n.

For a detailed discussion. especially of the differential geometric meaning of the various
operations explained above. see the exposition in Hackl (1995).

Let w c [R2 be an open set with boundary r·. Then a shell is represented by its reference
configuration n:= w X(-c, +c), c > 0, equipped with coordinates {n'~123' We call w the
reference surface of the shell. r,,:=}' X ( - c, + 1:) the edge of the shell and r + := W X { ±I:}
the faces of the shell.

Further. let .Cf" c [R3 be an open set with coordinate system {X'},~ 1.2.3 and metric tensor
g = (gi,)' which throughout this paper we will assume constant (independent of x' and
time t).

An actual configuration ¢(n) E g of the shell is given by an orientation preserving
diffeomorphism ¢: n ---> g.t ¢ can be uniquely represented in the form

(1)

t Of course. from a differential geometric point of view. ~ is nothing else than a map for a three dimensional
manifold. A shell can be any three dimensional manifold which can be embedded into R'. also a multiply connected
one. So the description given above has to be understood in a local sense, i.e .. you might need more than one map
~ in order to represent a shell.
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_, de"~ ¢) d¢ = O.
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(2)

where' = W),~ 1.2 and ¢ = C. Note that, in general, de"~ 0) i= O.
r = (r i

) denotes the position vector of the reference surface of the shell, d = (d'), the
shell director.

Let JJ c [R3 be another open set with coordinate system {X1L~ 1.2.3 and metric tensor
G = (Gu ). The initial configuration U¢(Q) of the shell is given by an orientation preserving
diffeomorphism o¢ :Q ---> JJ of the form

(3)

In contrast to ~ we will consider u¢ to be constant with respect to time t. t Without
restriction the initial director °d can be assumed to be perpendicular to the initial reference
surface o¢(w) and to depend linearly on ¢, i.e., let

(4)

be the natural basis vectors of the tangent space Tj& along the coordinate lines (., then
(identifying JJ and TfJ) °d can be defined by

(5)

where he,) denotes the thickness of the shell. The vector product in TJJ is given by
(v /\ wr:= (G- 1

)uGJKLVKWL, where GJKL denotes the totally antisymmetric tensor of order
three. CJKL is uniquely determined by the property (G- 1

)lJG1KlBJMN = GnfGLA- GKNGat . The

norm of a vector in TfJ is defined by II v II := v v . G . v.
A deformation of the shell is then given by a mapping

The deformation gradient§ F: TJJ ---> T.':I' is the tangent map of ¢J, given by

F = (F~):= V¢J = (¢:J)'

It holds that

(6)

(7)

(8)

where F: m ---> TCf' and of: m ---> TlJ. respectively. are the tangent maps of 4>, respectively,
0¢J. We have

(9)

t Here. and further on. we will suppress any explicit time dependency of the quantities present.
t As usual, here and subsequently. Greek indices range over the set: I. 2) while Latin indices range over the

set {I, 2. 3}. A comma in front of an index means partial differentiation with respect to the corresponding variable.
§Note that F is not a gradient in the sense of vector analysis because 1; connects different manifolds rather

than being a scalar field on a single manifold.
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A central feature of finite strain elastoplasticity is the multiplicative split of the deformation
gradient into a plastic and an elastic part, first introduced by Lee (1969). We will encounter
this formulation again in Section 9.2. Let us therefore introduce an open set fJJ c [R3 with
coordinate system p'r} r~ 12.3 and metric tensor G = (Gu ). We call fJJ the intermediate
configuration space. We assume the following decomposition:

with PF: TJB -> TfJJ and 'F: TJ,§ -> PI'. From (8) and (II) it follows that

F = 'F 'PF,

where PF is given by

(11 )

(12)

(13)

Remark: note that 'F and PF are, in general, incompatible. i.e., they are not tangent maps
of any deformation fields. In the same way. I'F is incompatible, i.e., it is generally not
possible to compensate a plastic deformation by choosing a new initial configuration. This
corresponds, of course, to the fact that residual stresses are built up in a body by plastic
loading and subsequent elastic unloading.

3. GENERAL THERMOELASTOPLASTIC THEORY

3.1. Unified thermoelastoplastic functional
In Hackl (1995), it is shown that all state equations of thermoelastoplasticity can be

obtained by variation of a unified thermoelastoplastic functional which, in our case, assumes
the following form:

r [cW. cT·V cW. CW
ri LTU = --':;-E : E + ~-~ Ii + --;;-P : P + ~ PIi

,,""'in) C CI) C cPI)

-8 :(E- ~(v(V'g' Vc/>-G») - S :(E- sym(VcbT
• g' vc/»)

- (hi - HI) +Q :P+ I'O"~ - /$ - f· g . rjJ - f· g . cb] d V

-J' [t·g·c/>+t·g·cbJdS
""'ir ..~r )

-f [1i'g'(c/>-1J)+h'g'(cb-*)JdS,
(lq,(r

o
)

(14)

where the symmetric part of a tensor T = (Tr) is given by sym(T) := ~(T + TT) = (~( Ti /+ Tj ;).

Ilun? is a functional with yariables (E, I), S, C/>, h, Q, P{), E,~, 8, cb, Ii, P, I'~} and constant
parameters (P, 1'1), f, t, 1J, o. f. t.1J, /, O}. Let us explain the various quantities involved in (14)
by deriving its state equations:

W= W(E,I),P,PI) is the internal energy, where E = (E[J) is the Green-Lagrange strain
tensor, I) denotes entropy per unit reference volume, P is an array of internal variables
comprising especially the plastic strain I'F but also, e.g.. hardening parameters, and PI) is an
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additional internal variable which describes a plastic entropy measuring configurational
change within the body (see Simo and Miehe. 1992, cpo also Hackl, 1995). Variation with
respect to Eand P. respectively. gives the constitutive laws

cW
S ;= --:;--E •

C

/'W
Q;= - 'P'

C
(15)

identifying S = (SIJ) as the second Piola-Kirchhoff stress tensor and Q as ther­
modynamically associated forces to P. Variation with respect to ry and Pry, respectively,
yields temperature () and a "plastic temperature" PO:

cW cWO
0=-,-, PO = -

CI'/ (~/'/I .
(16)

Note that if W depends on /] and 1'/7 via an elastic entropy '/1 = /1- 1'/7. as assumed in Simo
and Miehe (1992). then "0 = e.

Variation with respect to S gives the expression for the strain

(17)

Variation with respect to ;p and carrying out the usual partial integrations gives the
equilibrium conditions

(18)

where the divergence :x = V' T of a tensor T = T; is given by x, = T; J and f = (t) denotes
a body force. and the boundary conditions

( 19)

(20)

where n = (nJ) denotes the outer normal on 1Ic/>(r, v r _). (19) and (20) identify t = (t') and
h = (h') as surface tractions.

Variation with respect to h yields the boundary conditions

c/> =;p on {)c/>(C,j. (21 )

Finally, variation with respect to Q and I'e. respectively, gives the flow rules (evolution
laws).

. . i'<1>
P = i. ?Q' (22)

where <1> = <D(Q,!'e. P/'/]) is the yield function.
This defines the material under consideration as a so called generalized standard

medium. see Hackl (1995). Eqn (22) is also referred to as the generalized principle of
maximum plastic dissipation. J, is called the plastic consistency parameter. The variations
are subject to the subsidiary conditions

<1> :::; o. / '? O. /<1> = O. (23)

Variation with respect to lE./]. S, c/>. h} now yields nothing but the time derivatives of (15)­
(22).
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3.2. Pull back to the reference configuration
In order to be able to perform a reduction to a two dimensional theory we have to pull

back the variational principle described above from 0(j)(Q) to Q. For this purpose we need
the volume element in 0(j)(Q)

with the Jacobian

OJ = J det(op . G' OF).

The area element along a coordinate surface 0(j)('. ~ = const.) is given by

dS = aidA.

with

Finally, the area element along °(j)(ro ) is given by

dS = °Td~ds.

ds being the infinitesimal arc length along /' and °Tgiven by

(24)

(25)

(26)

(27)

(28)

(29)

where u(j), denotes the derivative of 0(j) in the direction tangent to /'.
Remark: the determinants occurring in formulae (25) and (27) are those of matrices

of rank three and two defined by det(A):= ~eiikelmIlA,{AlmAkn and det(A):= ~e'fJe;.aA,;AfJO'
respectively. Here, eilk and e,fJ are the total anti symmetric tensors of order three and two,
respectively, in the reference configuration.

Note that those definitions rely heavily on the Cartesian structure of the reference
configuration which it inherits as a subset of [R'. The obvious sign of this fact is the
summation being performed over lower indices only. A covariant definition would describe
the determinant as the product of the eigenvalues ofa mixed variant tensor, cf. the discussion
in Hackl (1995).

It has been stated in many locations. however. that rational mechanics should refrain
from using Cartesian structures because of the danger of confusing different types of
quantities, see. e.g.. Marsden and Hughes (1983) or Truesdell and Noll (1965). Considering
shell theories the situation is different. We have to find a mean to decide what should be
the "'middle surface" of the shell and what should be the "fibers". This is done by using a
differential geometric "'map" with its Cartesian coordinate structure.

Now we are able to introduce new quantities defined on Q by pulling back (cp. Marsden
and Hughes. 1983) the original ones:

: o· ,"
J. = }J.• (30)

t Especially pji = ",p*r'F = "F' OF.

(31 )
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Substituting (30)-(33) into (14), the unified thermoelastoplastic functional becomes

. r [aw;.. cW. ow;.. CW .
TI UTEP = In aE: E + orj rj + of> :P + (ipr,"rj

-s :(E-sym('l~T. g' 'l{b))

-8ry-&rj+Q: P+P8 pry -;$-£. g' {b-f' g' ~}~ dA

- r [t· g . {b + t + • g . ~] dA - r [t .. ·g . {b + L .g . {b] dA
"r. Jr

- r [h'g.({b-~)+ii'g'(~-~)]d~ds.Jr,

1615

(32)

(33)

(34)

TILTE? is now equipped with variables {E, q. S, {b, ii, Q, P8, E, ry, S.~, h, P, pi]} and constant

parameters {P, Prj, f, t±, ~, 8. f. i-::, ~,t &}. Ofcourse. the newly defined quantities will satisfy
the same state equations as the old ones.

4. THREE FU]\;DAMENTAL ASSUMPTIONS FOR SHELL THEORIES

We will introduce now three a priori assumptions. None of those is actually a math­
ematical necessity but they are meaningful from a mechanical point of view and will allow
us to significantly simplify the formulation of shell theories.

First fundamental assumption for shell theories
We assume that (approximately) the external forces f and t:-: perform work only via

the deflection of the reference surface r. i.e., it holds:

(shelll) (f'dd~dA = const., r t± 'ddA = const.In .r,

From a mechanical point of view this means that we will regard any substantial external
work related to the director d, i.e .. to an intrinsic deformation of the shell, as a fundamentally
three dimensional effect which cannot be addressed by a two dimensional shell theory.

The second assumption is the analog to the first one for the internal forces.

Secondfundamental assumption for shell theories
We assume that (approximately) the stresses (internal forces) S perform work only via

the deflection of the reference surface r. i.e .. it holds:
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(shell 2) (S :(VdT
° g ° Vd) d~ dA = const. = r S :(VOdT

° G ° VOd) d~ dA.Jo ~o

At this point, substitution of (shell 2) into (34) would yield £" = O. Since one of our goals
is to include large strains and therefore the possibility of significant changes of the shell
thickness into our considerations, this is not acceptable. In order to avoid this problem we
still have to introduce a third assumption.

Thirdfundamental assumption for shell theories
We assume that (approximately) the stresses (internal forces) S perform no work via

change of the shell thickness, i.e., it holds:

(shell 3) r. .5" En d~ dA = const.
,,0

Before going on we have to introduce some additional notation employing the Car­
tesian structure of the reference configuration.

For contra-respectively covariant symmetric tensors (matrices) of rank three, E = (£i)
and S = (.5il

) on Tn, we define matrices and vectors of rank two by

E- (E") (E-) S- = (S<'li) :=(5-'11),= xli:= 'Ii'

In particular, it holds that

From (shell 3) we immediately obtain

nv
." = O.
(E"

(35)

(36)

(37)

(38)

SubstitutioI). of (I), (shell I), (shell 2) and their time derivatives into (34) and elimination
of £33 and £" via (38) and its time derivative gives

, ~ La w;, CW:. aW. cW ~ aw .
TI eT};? = J -"E-: E + -;;-E-- ° E+ •- 1] + 'p": P+ --1'/1

n ( C C/1 ( (JI'/]

;, - 1
-S :(E-i(VrT

° g ° Vr- VOrT ° G ° VOrl

-sym(VrTogoVd_VllrToGoVOd»

-S o(2E-(Vi"T' g 'd, +d, ° g ° Vr»

-£111-£j1]+Q: P+I'(} I'ry -j~<DJd~ dA
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- L[h.g.((r-r)+(d-d))+h.g'((i'-f)+(d-d))]d~dS, (39)

where (jJ as a variable has been replaced by {r,d} and

(40)

Remarks:

(i) Note that all vector operators occurring in (39) and subsequently are now two dimen­
sional, i.e., Vv = (l":J, i = 1,2,3, 'Y. = 1,2.
(ii) There exist expressions for the internal energy where it is not possible to solve (35) for
£". It is then possible to keep £" as an "internal variable"' and still carry out the analysis
to follow. Some expressions, however, will of course become more complicated. Also, the
analogy to the three dimensional theory will be lost to a certain extent.

It is instructive to consid~r the ~tate equations which have been altered by the sub­
stitutions above: variation of Sand S gives the strains as

and

(42)

Let us now introduce the unique decompositions

with

f
+'

, Sd~ = 0

and

_ " I () _"
h(~,s) = 2Gh (~)+h(~,s),

with

f,' iid~ = O.

Then, applying multiple partial integration. variation of i' yields

(43)

(44)

(45)

(46)
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(47)

(48)

Variation of it gives

and

V'(Vr'S)+Vr'S3 = ° Onn,

ii = Vr' S' n on f"

(49)

(50)

(51 )

Note that the divergence operator "V·" in (47) and (49) is also two-dimensional, i.e.,
V'T = Ti ', 'Y. = 1,2. The tensor or dyadic product of two vectors is defined by
(v ® w),p:= L',II'/j.

One observes that, particularly, (47) and (48) are not completely satisfactory. Property
(51), however, is an important restriction which we will try to satisfy in an a priori manner
in the further development of the theory.

Also. it should be emphasized that, in the asymptotic limit I: ---+ 0, the decomposition
(43) becomes singular. As shown by Fox et af. (1993). the problem for SO becomes decoupled
in this case, constituting a membrane theory. Furthermore, they show that the form of the
shell model obtained in the limit is strongly influenced by the assumed form of the external
loading (in our case assumption (shell I)). As already stated, we don't intend to proceed
along this line of investigation within the present work.

5. BIORTHOGONAL FCNCTION SYSTEMS

We will call two sets of functions {iii'}, lljJ") defined on the interval [-I:. +1:]
biorthogonal if

(q/",IjJ"):= fc q/"(~)IjJ"(~) d~ = [y"'''.

where iJ"''' denotes the Kronecker delta symbol.
Letj; g be two functions defined on [-i-:, +1:] and let us introduce the expansions

.!=I"q/'. 9 = g"lj;".

where, because of (52), the expansion coefficients are given by

I" = (.f;lj;") = J~i'.fiI;" d~. g" = (g, q/') = J~,'g<p" d~.

Furthermore, we have the important property

(52)

(53)

(54)
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(/,g) =f"g"·
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(55)

We call {cp"}, {lj;"} complete if f = / and g = g for all square integrable functions f,
gE2'2[ -8, +8]. Of course it seems to be preferable to use expansions with respect to
complete function systems. This is basically true, but there are situations where, e.g., an
approximation by a finite set of functions like a collocation or a finite element ansatz may
be more desirable (see Section 9.2).

6. REDUCTION TO A TWO DIMENSIONAL THEORY

Using expansions of the form (53) we will be able to carry out the "thickness inte­
gration" over ~ explicitly and thus obtain completely two dimensional shell theories.

As we will see immediately, the most favorable way to do this is to use expansions
with respect to biorthogonal function systems for energetically conjugate quantities. Two
quantities A and B are called energetically conjugate if A = aw;aB.

Now let A = A"cp", B = B"lj;" and let us introduce the "integrated internal energy"

We get

cW f+i: CW f~'
-~.-= .-lj;"d~= .. Alj;"d~=A'"
eB" ~,aB .. ,

(56)

(57)

Hence we obtain a relation for the expansion coefficients A", B" which is analogous to that
one for the quantities A, B themselves.

Motivated by this observation we introduce the following expansions. In order to have
enough flexibility we will use different pairs of biorthogonal function systems, indicated by
diverse subscripts, for the various pairs of energetically conjugate quantities.

Let us start with the deformation

(58)

where we make the special identification

(59)

This means we have

(60)

Moreover, we get

d = d" cp" , n::;;, 1t.

~,

for the director. Similar expansions will be assumed for °cfJ and lb.
The strains and stresses will be expanded according to

(61 )

t Usually formulae will hold for indices ranging over the set :/1;' 0:. If this is not the case it will be explicitly
stated.
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It = E"<p", [= [llif/', (62)

(63)

For the remaining quantities we will assume

p = P"<p~, Q = Q"ljJ~,

fi = h"ljJ".

(64)

(65)

(66)

(67)

(68)

In order to keep the theory concise, it is desirable to take only a few terms of the expansions
(62) and (63) into account. This means that especially every summand in the expansion of
the shear stress S should satisfy the boundary condition (51) separately. We achieve this
by claiming

f"(±F.) = 0 for all n ~ O. (69)

Substitution of (59) and (61 )-(68) into (39) and carrying out the integration over ~ gives
the completely two dimensional functional

.:. f [c W. CW.:. aWew. aWTI CTEP = -: E" + ~'E"+ -Ij"+ -: pll+ __PIj"
'" cE" cEil Cll" oP" CPIJ"

-So :(EO-~(VrT 'g'Vr-VOrT 'G'VOr))

- S" :(E" - sym(VrT. g' Vd" - VOrl. G' VOd"))

-SO :("[0 -sym(WT. g' Vr))

-S" :("[" - sym(WT. g' Vd" +Vd"T. g' Vr))

-S" '(2E" _1\"k(WT
• g' dk +dk

• g' Vr))

- e"Ij" - (j"IJ" +Q" : P" +pe"PIj" - /"<1>" - (p. g' r +p' g' r)JdA

-f[1i0 . g '(r - r) + ti" . g '(d" - jill)

(70)

where we call
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(
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K"

k
= f'1I ,d~ ipk)
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(71 )

the shear-correction-factor-matrix because as a special case it will contain the well known
correction factor of Reissner-Mindlin-theory. .

.:. '. f' . . f II - II II II - n n II Q" pen E'II E-n .n S·II. I1 UTEP IS a unctlOnal with vanabIes 'lE , E , '] , S , S , r, d , h '. ' , , ,YJ, ,
sn, t, <i", lin, pll, Pr,"} and constant parameters {pn,I'YJ", p, f, (i~', en, pj, jin,)c", en} .

.Let us now investigate the stationarity conditions of fI UTEP' Variation with respect to
E", E" and pn, respectively, gives the constitutive laws

and

cW
S":=_,

OE"

_ loW
S":=_-

2 cEil
(72)

DW
Qn:= __ .

CPIl

Variation with respect to r," and pr,n, respectively yields

(73)

cW
8"=-,

or!"
c:W

pe" = ---.
i3 pYJ"

(74)

Variation with respect to sn and S". respectively, gives the expressions for the strains

Variation with respect to t gives the equilibrium condition

and the boundary condition

Variation with respect to <i" gives the equilibrium conditions

V'(Vr'Sn)+KkIlVr'Sk = 0, n? I

and the boundary conditions

hn = Vr' sn .n, n): I, on ".

Variation with respect to lin yields the boundary conditions

r = f. dn = (in. n? 1, on,'.

(75)

(76)

(77)

(78)

(79)

(80)

(81 )

(82)

Finally, variation with respect to Q" and pen, respectively, gives the flow rules (evolution
laws)



1622 K. Hackl

. ,1 C<!>'
p" = I.

CQ"

,", C<!>'
Pi!" = 1.'­epen

(83)

Once again, variation with respect to {E". E".l]n. S". Sn. r. d". h". pe"} yields the time deriva­
tives of the equations derived above.

We would like to point out now the strict analogy between the two-dimensional
equations (72)-(83) just derived and the three-dimensional ones given by (15)-(22), (41),
(42) and (47)-(50). ((51) is satisfied implicitly now.)

7 THE INEQUALITY CONSTRAINTS

We still have to discuss the subsidiary conditions (23) in order to complete the two­
dimensional theory. In the general case this turns out to be a quite complicated task
involving convex analysis, see, e.g., Rockafellar (1974). To simplify matters we will intro­
duce the following assumption:

A set offunctions {<pn} possesses the separation property if. for anyfCO = .f"<p"(CJ. the
following holds:

fW ;? 0 V~ -=/" ;? 0 "In.

Consider for example the following collocation ansatz :
Choose ~o, ... , C. ~(), ... ,~N+ IE [ - c:. + c:] such that

(84)

and define

(86)

where J is the Dirac-delta-function and X[~,I]] denotes the characteristic function of the
interval [~,I]]. Clearly both {<pi'} and {l/tn possess the separation property.

Another example is given by

(87)

If {<pJ} and {l/tn possess the separation property, the inequalities (23) decouple into

(88)

8. THE ELASTOPLASTIC TANGENT

For numerical purposes the elastoplastic tangent operator, i.e., the relation between
stress and strain rates is of special importance. Let us introduce the abbreviations
!;n:= {En, En, I]"}, £n:= {pn,pl]"}, ~":= {s'\sn,e"}, Q":= {Q",pen}.

Variation of!;n and £" in (70) gives the constitutive relations for the time rates

a2 W. (~2 W .
8" = : E' + -- -: P'

cE"aE' eEncp'

t There is no summation over indices in parentheses here and subsequently.

(89)
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Q' I! = _ ;P W '. E'k _ 3
2
W . k---:P,

- 3pI! aEk - apl! Cpk -

1623

(90)

where of course partial derivatives and the" : "-product have to be defined respecting the
actual structure of the quantities involved. The flow rules (83) now become

In order to proceed further we have to define the set of active yield surfaces

A { ,'I! 0)ct:= n,). > i.

(91 )

(92)

For plastic loading (i.1! > 0, i.e., n E Act) we have from (88) <l>1! = 0 during the whole loading
process. Hence, we get the plastic consistency condition

Substitution of (91) into (93) and solving for ).~ gives

. c<l>~ a2 W ,
I.~ =(K-')I!k--:-···-:E"',

- a(:t a~{ cJ<:/11 _.

with

Substitution of (91) and (94) into (89) finally yields

where the elastoplastic tangent operator ep!tk is given by

(93)

(94)

(95)

(96)

(97)

Here once again the tensor product" (8)" has to be understood in the appropriate way.
From (95) one clearly sees that in general K is non-symmetric, i.e., Kl!k i= Kkn . Hence

this is also true for "1'.12. It is, however, symmetric if <I> does not explicitly depend on P, i.e.,
if a<l>/cp = O.

9. A SHELL MODEL FOR LARGE STRAIN ISOTHERMAL ELASTOPLASTICITY

9.1. Kinematics and equilibrium conditions
In the following we will give a specific example for the theory developed so far. The

model is valid for a moderately thick shell subjected to large elastoplastic strains. In order

t Here and further on. underlined indices range over Act only.
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to keep matters simple we will disregard thermal effects but it is of course possible to include
those in a straightforward way.

In this subsection we will consider the expansions of the kinematic quantities and the
stresses. If we assume the shell to be shallow in its initial configuration then expansions up
to order n = I are sufficient even for high curvatures in the actual configuration. Let us
therefore set

(98)

(99)

Clearly, ~o satisfies (69). This ansatz corresponds to Reissner-Mindlin theory. The only
nonvanishing shear correction factor is then

The director is given by

and the strains are

Kill (100)

(101)

The stresses become

(102)

( 103)

Of course. Sil now denotes the normal forces. SI the bending moments and SO the shearing
forces inside the shell.

We obtain the following definitions for the strains:

( 104)

(105)

(106)

Finally we get the following equilibrium conditions:

(107)

(108)

The boundary conditions (81) and (82) remain unaltered and will not be repeated here.
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9.2. Constitutire theory
We will use a constitutive model which is valid for moderately large elastic strains up

to about 0.2. This is sufficient to describe even deformations of the shell resulting in high
curvatures (up to 1;4<;).

Before we can start deriving two-dimensional stress-strain-relations for shell theory we
have to agree on expressions for the three-dimensional internal energy Wand yield function
<D. For isotropic large strain elastoplasticity it is suggested in Hackl (1995), that the internal
energy depends solely on the invariants of the elastic right Cauchy-Green-tensor

(109)

We will base our analysis on compressible neo-Hookean material, see, e.g., Ciarlet (1988),
and set

where

and

'j = v det(C loct)

U('j) = ~if -~(i.+2p) log},

(110)

(III)

(112)

Here, i. and p are Lame-parameters. t
Remark: W, as defined above, satisfies three fundamental requirements for large-strain

internal energy functions:

(i) It reduces to the expression for linear isotropic elasticity in the small strain limit, i.e.,
for C- 1 .ct close to identity.
(ii) It holds U('j) ---> .::rJ for 'j --->::rJ or 'j ---> O. In particular. compression to zero volume

requires infinite force.
(iii) cW;c'C = 0 for C - 1 0 ct = I (identity on the intermediate configuration), i.e., the stress
is zero if there is no deformation.

Because tensor invariants remain unchanged by pull-back it holds that

tr(C- I oct) = tr("C 1 0 C)

and

(,'_p' I·
/ - / /'

where

C = FT
0 go F = G +2E

denotes the total right Cauchy-Green-tensor and

(113)

(114)

( lIS)

(116)

t Note that the Lame-parameter i. is not related in any way to the plastic consistency parameter ).. Knowing
that there is a danger of confusion we still have chosen to keep up this notation in order to be consistent with the
common usage in the literature.
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the plastic right Cauchy-Green-tensor, and we have introduced the determinants

j = .J det(G- 1
• C)

and

(117)

(118)

We will assume the plastic flow to be isochoric, i.e., it holds that ') = 1 for all time. Thus
the internal energy assumes the form

Using

we get

adet(A)
~A = det(A)AT I
C

(119)

(120)

(121)

for the stress tensor.
At this point we will introduce a slight modification to the scheme developed in the

previous sections. It turns out to be favorable to be able to expand j independently of C.
Therefore we would like to treat j as a separate variable. This can be achieved by adding
the definition (117) to the functional (14) via a Lagrange-multiplier. That is, we introduce
a modified internal energy

V:= W-n(j-y det(G I 'C» (122)

and new variables j, nand j: ft, respectively. n can be viewed as a stress like variable (a
hydrostatic pressure). With those definitions (121) decouples into

and

s = ~~ = nj det(G I. C)c- I + j.1PC I (123)

(124)

Next we choose p:= ~C-l as the internal parameter. Then the thermodynamically
associated force becomes -

aw
Q = - --:;-P = -j.1c.

()

A von Mises-type yield function is given by

(125)
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R = l2/3rJ y , where rJy denotes the yield stress. The norm and the deviator of a mixed­
variant tensor T are defined in the usual way by IITI! := IT: TT and dev(T) := T -~ tr(T)I,
respectively.

The flow rules become now

• . iJ<D -
P = ;. ~Q = 2i dev("C - I • Q) '''C I

(.

Using (120) we finally get

d
-det(G- 1 '''C) = det(G- 1 '''C)tr(''C I ·"t) = 0
dt

( 127)

( 128)

because of (127). Hence, our formulation is consistent with the assumption Pj = I.
An overview of the whole constitutive model is provided by Table I.
According to Section 3, the next step is to pull back the formulation onto Q. Let us

therefore introduce quantities

(129)

and

( 130)

The yield function now simply becomes

(131 )

As for the internal energy matters are more complicated: let us assume additionally that
II Ell « I, i.e., that the shear-deformations remain moderate. Then it holds that

1 I - c,\, ~
det(G 'C) = -det(C) = -'-det(C),

Of Of ( 132)

where we make use of the decomposition (35), (36). Note that once again the expressions
det(C) and det(C) are only defined via the Cartesian structure of Q.

Table I. Three-dimensional constitullve model

Intemal energy:

Yield function:

Extra variables:

Stresses:

Thermodynamically associated forces:

Flow rule:

-IT(j- det(G I -C))

C!l=4!!dev(P'Q}!' R'

1 1 I
IT = -,ij- -,(i.+2/1)-:. j =" det(G I -ci

- k 1

S = ITy det(G"~C) C I + 2/IP

Q = -/iC

j> = 8;. dev(p -Q) . P
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Decomposing P according to (36) and using (132) we get

. '")
V= II "V _ I. () ··C I. + ~I/ II ·1 .

J - 4. 11 _.~ J ogJ

+ °jp(P: C + 2P' C+ p13 C,,) - "jjn+ C\ 2 -.j det(C) n. (133)

y det(C)n

2l1jpP' ,
(134)

Substitution into (133) gives

• i. , i.+2{/ _ _ _ _ det(C)n C

V=_lI j}-_- -Ojlogj+"jp(P:C+2p'C)-lIjjn- - ...--_-. (135)
4 .. 2··· .. 4l1 jpP' ,

The resulting constitutive model is displayed in Table 2.
Note that n does not play the role of a Lagrange-multiplier anymore. The state

equations forj and n have now become coupled.
The next step is the derivation of the two dimensional model according to Section 6.

For this purpose we have to make a choice on the function systems [~;} and [1jJ;}. We will
assume both systems to consist of piecewise linear functions. Let ~o..... (v be collocation
points as in (85). Let 1jJ;; be the piecewise linear function with 1jJ;:(~") = I and 1jJ;;(~i) = 0 for
i # n. Because ~;: is piecewise linear as well. there is a unique expansion

lfJ;: = h"'IjJ;'.

Table 2. Constitutive model on the set Q

Internal energy:

_ i.,. i.-2j1 . _ _ _ _, det(C)n'
V = -4 ljt - -,-OjlogJ+"jj1(P C+2P'C)- 'jjn- --.-

_ . . . 4"jllpn

Yield function:

<IJ = 4°j , dev(P'Q)!' -R'

Extra variables:

. det(Cln
J= _ ...._-

2°f liP"

Thermodynamically associated forces:

(136)

det(C)n'
---_._,

4"1j1(P")'

Flow rule:



Framework for nonlmear shells

It is easy to see that : q>~] and : ljJ~} are biorthogonal if and only if

b = e I

where c is the matrix defined by

e"' :=(ljJ;:.ljJ~).

1629

(137)

( 138)

: q>~} and {ljJ~} are depicted in Fig. 1 for the case of 6 collocation points (IV = 5). Only half
of the basis functions are shown: the remaining ones ( for 11 = 3.4.5) are mirror images of
those.

Note that {cp;:} as well as : ljJ~} form a basis for all piecewise linear functions with knots
{~"}. i.e., we have for any such functionf

(f q>~) =fk").

We get the expansions (65) which we repeat here for reference:

P = P"q>;:. Q= Q"ljJ;:.

( 139)

(140)

0.8

0.6

0.4

0.2

1.5

0.5

-0.5

Fig. I. Piecewise linear biorthogonal function systems.
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(140) splits into

K. Hackl

P- = p"m" p- = pllm"
'-rp' 'f'f!' (141 )

(142)

We will assume the quantities ]5" and Q3l are constant across the shell thickness. Because
of (136), (137) and (139) this yields the following relations for the expansion coefficients:

(p ll)l.1 = pA.\< ,(,Ilk. (Q") QAL. .13 = 3.1·
k

Moreover. we define

For the variablesj and n. we assume the expansions

(143)

(144)

(145)

At this point we have to utilize once more the restriction that the initial configuration of
the shell possesses only moderate curvature. This means that OJ is approximately constant
over the shell thickness and given by

(146)

Moreover. we have

(147)

where the wedge- and double-wedge-product of two matrices of rank two are given by
(A /\ 8),/1:= £.,jA,;Bo/1 and (A ~ 8),~:= £,/I[;;,jA>;.B/M .

Finally we are going to choose the collocation ansatz (86) for {cpn and {t/tn.
With all those expansions introduced now we are able to perform the integration over

the shell thickness in a straightforward way. We will not go into any details but display the
results in Table 3.

Note that many peculiarities of the three-dimensional model are still reflected by the
two-dimensionai one. There is. however. one distinct difference: It is no longer possible in
the two-dimensional model to eliminate the extra variables/.i. nO. n 1 ab initio. They have
to be retained and solved for together with the other unknowns.

10. CONCLUSIONS

A flexible framework for nonlinear shells has been established which allows to cat­
egorize almost every existing specific theory (analytical as well as numerical in nature) in a
unified manner. The formulation is able to encompass general anisotropic thermo­
elastoplastic material behavior and has been worked out in detail for the isothermal and
isotropic case. Moreover. it can be extended in a straightforward way to include rate­
dependent and damage models. The approach yields analytical models which exhibit a close
relationship to the underlying three-dimensional theory.

Future research should discuss more closely the role of the a priori assumptions used.
Also. applications of the theory presented to materials involving volumetric-deviatoric
splits or anisotropy are desirable. Finally the shell models thus obtained as well as the
example presented in Section 9 in this paper will have to be implemented numerically.
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Table 3. Two-dimensional constitutive model
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Internal energy:

V = ~ OJ[2F.(I'')' + ~E' (j' ),]
4 . 3'

i. + 2/l [ ) _ . • /'
- -~_Oj F.log«(/)- - (f;/, I") +2.-:;-tanh

~ I
I (~)')]

+ OJ/l[~ pn: Co + ~np": C' + 2a"P'" t"J- "j/'rr"

___1_._.[det(CO)«rr")' + (rr' I') + 2_f:C" C'rrorr'
4°j/lP" " 3

+ E' det(C') G(rr")' + ~(rrl)')J
Yield function:

<D"I = 4°F' (b"" b,,11 dev(P' . Q")) : dev(pl . QIlI) 1) _ R'

Extra variables:

rro = i.d'-U+2/l)~tanh
. j'

,(c.;/' )
/'

..,
'J+2°j /l L pn

"

; Go/'rr l =-c;'i' --(i.+2/l) - ---tanh
3 . ., (jl)'

i" = --.1_,,_[(2 det(C")+ ~F.' det(C')\" + 2_F.Co. cirri]
4"f/lP" 3 ) ,,3

j' = -._I_.-[-.2..r-EC" C I rro + (2 det(Co) ~ 51: 2 det(e' ))rr l]
4°J"/lP" ,,/3 6

Stresses:

S" = - .._1_._. [det(CO)«rr")' + (rr' )')(C") ,
2"j/lpJ ,

~

+ ~~l:det(C')rrOrr'(e')

",3

S' = - -. ~::-[ 2... _c;det(CO)rr"rr' (C") I
2"j/lp n ,,:3

+f:' det(C ' )G(rr")2+ ~(rr')')tC I
)

Thermodynamically associated forces:

Q" = -"i/l(c"+~nc')

On = - I •. , .[det(CO)«rrO)'+(rr ' )')+ ~f:Co ;C'rr"rr'
4"j/l(P')- V 3

+ /' det(C') G(rrO)' + ~(rr')')J
Flow rule:

P"" = 8/"""j 'h'"'' hi"" dev(P' . Q'''') . P'
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